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Nonstationary gas filtration from the cavity of a camouflaged underground explosion through a 
disaggregated porous medium is calculated. The computations were carried out for a spherically 
symmetric gas experiencing two-dimensional motion. A two-term law of filtration was used. 
The space-time pressure distribution of the gas within the medium was obtained. Motion bode- 
graphs of the "front" of filtration and the interface between the explosion products and air were 
constructed. The influence of the soil filtration characteristics and pressure in the cavity was 
investigated. The time at which gas is discharged into the atmosphere is determined based on 
well-known data on the permeability of certain types of rocks that have undergone the effects of 
an explosion. The variation of gas flow with time as a function of explosion depth is established. 

Underground camouflaged explosions are  charac ter ized  by an insignificant r i se  in the f ree  soil surface.  
Nevertheless ,  in the overwhelming majori ty  of such exposions the soil mass  is in the disaggregated state right 
up to the c res t a l  plane as a resul t  of the effect of compress ion  and dilation waves and also due to p re fe r red  
upwards displacement.  A p roces s  in which explosion gases appear in the many c racks  and pores  of the su r -  
rounding mass and their  subsequent extrusion into the a tmosphere  therefore  occurs  at the final stage of camou- 
flaged explosions due to the effect of excess p r e s su re  in the cavity. Concepts f rom filtration theory [1-3] can 
be used to descr ibe  such gas motion. A s imi lar  mechanism for the discharge of explosion gases  is typical  for 
sufficiently s turdy rock, inwhichthe cavity either does not cave in or does cave in at a sufficiently later point 
in time. 

A theoret ical ly  distinct mechanism for the discharge of gases into the a tmosphere  due to continuous cav-  
ing in of the cavity up to the c res ta l  plane is possible in loose ground. Some resul t s  of measurement  of the 
t ime at which gas is discharged into the a tmosphere  according to this mechanism have been set forth in [4] in 
the case of an ideally free-f lowing medium. A combination of both gas -d i scharge  mechanisms is possible un- 
der actual conditions of ca r ry ing  out underground explosions, depending on the scale of the explosion and the 
geological ~tructure of the massif .  

In the cur rent  work, the problem will be formulated in the following way. A cavity of f in i te rad ius  r 0 with 
cavity gas p r e s s u r e  Pl exists in a disaggregated permeable  medium at the initial moment of time. Gas f i l ters  
f rom the cavity under the effect of p ressure .  The pores and c racks  of the medium are filled with air at an ini- 
tial p r e s su re  P0. We have assumed in solving the problem that: 1) the disaggregated medium has ceased mov- 
ing; 2) medium poros i ty  in the course  of gas motion remains invariant;  3) gas motion through the d isaggre-  
gated medium is descibed by a fil tration equation that contains linear and quadratic t e rms  ; 4) g a s - m e d i u m  
heat exchange is not taken into account;  and 5) cavity gas and air in the pores  are  assumed to have identical 
constant viscosi ty.  

We note that the resul ts  of a solution of this problem can also be useful in studying the p rocess  by which 
the s t ressed  state of a solid medium breaks  down and var ies  due to gas from an explosion penetrating the cracks . 

The nonsteady motion of a fi l tering gas is descr ibed in the one-dimensional  case using Euler variables 
by the mass  preserva t ion  law 
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dt -~ - ~  (Pq) -~ 9q  (1) 

and a t w o - t e r m  D a r c y  law 

oe • pq~ (2) 
or = ~ q - -  -k~-t s g n q '  

w h e r e  p is p r e s s u r e ,  p is dens i ty ,  g is gas  v i s c o s i t y ,  q is  f i l t r a t ion  r a t e ,  m is po ros i t y ,  k and k t a r e  the  
p e r m e a b i l i t i e s  in l a m i n a r  and turbulen t  flow of the f i l t e r ing  gas ,  and v is the d imens ion  of the p r o b l e m  (v = 
1 in two-d imef f s iona l  and ~ = 3 in s p h e r i c a l l y  s y m m e t r i c  gas motion).  

The equat ion of s ta te  of the f i l t e r ing  gas  is taken in the f o r m  

9 = A p  ~. (3) 

We a s s u m e  that  the  m a s s  fo rmed  as the gas  explodes  r e m a i n s  invar ian t  dur ing  the f i l t ra t ion  p r o c e s s ,  
and that  the condit ion on the cav i ty  boundary  is de sc r ibed  by the equat ion 

ape S 
0--7- = - -  (PCq) - V '  

where  p c = B p n l c  is the equat ion of s ta te  of  the gas in the cavi ty  and S and V a r e  cavi ty  su r f ace  and vo lume,  
r e s p e c t i v e l y .  

It is na tu ra l  to spec i fy  the p r e s s u r e  d i s t r ibu t ion  at the ini t ial  momen t  of t i m e  in the f o r m  

/ p l  whe~ ~ = ~., (4) 
p ( r ,  O) 

( Pa when r > r o. 

We e l imina te  p and q f r o m  Eqs .  (1)-(3), obtaining a s ingle  nonl inear  s e c o n d - o r d e r  pa r t i a l  d i f ferent ia l  
equat ion in p, 

a p _  
Ot 

with the  boundary  condi t ion at r = r0 

where  

k [a  { nap'~ t v - - i ~ t ~  /G t)] (5) 

a p ' ,  s ~tkt (G 1 -  t), (6) 
0---7---- V ~ffk~ 

Op. r k2A6 n Op 
6 = - - s g n q = s g n - ~ - r , G =  i+4~.2--~-t p ~ �9 

Equat ions  (5) and (6) imply that  the solut ion has the f o r m  

( Ak~ Sl~kt" ) 
P ~-~] P0;t~ re; n; nl;~m; ~k t ' ]~Bk" t; r . 

We in t roduce  the d i m e n s i o n l e s s  p a r a m e t e r s  
Ak~p~ +i 

H = P/P1;  H o  --- P o / P l ;  ~z --- p,2ktr ~ , 

SromA kplt 
= �9 " ~ =  , . ; x = r l r  o, VBpl n'-'L ' m~tr~ 

SO that  Eq. (7) is wr i t ten  in the f o r m  

/ / = / ( / / 0 ;  n; nl;  ~;  ~; z ;  T). 

As a r e s u l t ,  Eq.  (5) in d i m e n s i o n l e s s  f o r m  convenient  fo r  p r o g r a m m i n g  takes  the f o r m  

2tl n OH 
| O (.nOH' , - - I  Ox G~- ~ - ~ - 4 o $ I - I n ~  ~ T; ~ - ~ 7 )  - ~  - -  a-7- ' ~ (G+I)"  

under  the boundary  and init ial  condit ions 

OHn" 2~ H n' all. V t  I~xl av ----- G ~  -- a~-' G1 ---- -{- 4a l l  TM when x -~- 1; 

(7) 

(8) 

(9) 

90 



(11) H(l ,  0 ) = l ;  H(x, 0)=g0when ~=0, 

and we r e q u i r e  tha t  al l  the funct ions be bounded as x - - ~ .  

Thus ,  the p r o b l e m  has r educed  to the  solut ion of Eq. (9) under  the boundary  and init ial  condi t ions  
(10) and (11). 

It is convenient  to in t roduce  the new funct ion 

[[H (x, x)l ~' when x = 1, 
Z ( x ,  ~) = l l H ( x ,  ~)l = whenx> I. 

and pas s  to the f i n i t e -d i f f e r ence  analog of the p r o b l e m  (9}-(11). We may  wr i te ,  us ing the C r a n k - N i c h o l s o n  
s ix-poin t  method [5] with un i fo rm grid and pi tches  h in coord ina te  x and A r in coord ina te  r, the equat ions  

hv { i [Z (i § i, i + I) z(i, l' + l) z ( i , / )  7 ~  o ( i , / §  i) 
H ( t , / §  H( t ,  /) 

( v - -  i) h 
--2Z(~, ] +  i ) §  Z ( i §  l, ]q -  l)l-t- z(i)[~(~, i + ~ ) + i l  [ z ( t §  i, ] §  

} ' '  A, / ~  l z  (~ + t ,  i) - 2z(~,j)  - - Z ( i - - l , ] §  § 2 4 7  h~(n+l)  
(~ i) h 

IZ (t + i ,  1) - -  Z (t - -  i ,  1)1}; (12) . k Z ( i - - l ,  1)] § x(O~T,~)-+ i] 

o j)  = ] / i  + Iz  + , ,  :) - z - i ,  J)l; 

Z[(0, f -}: t) Z (0, /) 2~hv 
H ( 0 , / §  i) H [ ( O , / ) = ? ( n ~ § 2 4 7  

2~A~ [z  (I, ]) - z (0, 1)1; (13) x [Z (t ,  ] + l) - -  z (o, ] + 1)l + ( l  - ~) (.~ + ~) hi(a, o, j + ~)1 

W 4~ Iz (i, 1) - z (o, 1)t (0, 1) = l q ( . ,  + i) 

Since the n u m b e r  of computa t ion  points  is bounded,  l i nea r  ex t rapola t ion  to infinity is uaed at the r igh t  c o m -  
putat ion boundary ,  

Z ( N  - -  2, ]) - -  2 Z ( N  - -  t ,  ] ) + Z ( N ,  ] )=0 .  (14) 

The s y s t e m  of equat ions  (12)-(14) cons i s t s  of ( N + I )  equat ions  with (N+ 1) unknowns,  where  N is the 
n u m b e r  of  computa t ion  points  in a s ingle  t i m e  s t r a t u m .  The p a r a m e t e r  T may  take  values  f r o m  z e r o  to one, 
T= 0 r e su l t i ng  in an expl ic i t  fou r -po in t  s cheme ,  and T = 1, an impl ic i t  s cheme .  P r a c t i c a l  computa t ions  have 
d e m o n s t r a t e d  that  the bes t  ( f rom the point of v iew of computa t ion  a c c u r a c y  and stabil i ty) is T ~ 0.55. 

Equat ions  (12)-(14) can be r ewr i t t en  In the f o r m  

a(i  - -  t)Z(i - -  t,  j § 1) - -  b(i)Z(i ,  ] -t- 1) -t- c(i § t)Z(i § 1, ] §  

= - - l ( i ,  ]), a( - -  t )  --- c (N  § t )  = O, i -~0  . . . .  ~ N. (15) 

The s y s t e m  (15) was solved using the f ac to r i za t ion  method [5]. In the c o u r s e  of the solution we f i r s t  
se t  H(i, j + l ) = h ( i ,  j), a( i ,  j + l ) = a ( i ,  j), and the va lues  of H(i, j + l )  and (r(i, j + l )  were  re f ined  in t e r m s  of 
the r e su l t i ng  va lues  of Z(i, j + 1) until  the e r r o r  In Z was  l e s s t h a n  0.001%. Actual  expe r i ence  demons t r a t e d  
that  two to  t h r e e  i t e ra t ions  w e r e  suff ic ient .  

It is evident  f r o m  Eqs .  (12) and (13) that  the discont inui ty  in the ini t ial  condit ions (11) is elimL,~ated 
by " sp read ing"  by one s tep ,  i .e . ,  taking H(0, 0) = 1 and H(h, 0) =I-I 0. 

The p r o g r a m  p rov ides  for  the ca lcu la t ion  of the d imens ion l e s s  gas flow and the posi t ion  of the i n t e r -  
face  between the cavi ty  and in t e r s t i t i a l  ga se s  l ( r ) .  Computat ion p r e c i s i o n  is cont ro l led  by checking  the 
m a s s  ba lance  o v e r  the en t i r e  space  of eompuat ion  points .  

The d i s t inc t ive  f ea tu re  of the p r o g r a m  is that  the boundary  of the computa t ion  r eg ion  is va r i ab le .  This 
was done on the bas i s  of the ana logy of our  p r o b l e m  to hea t - conduc t iv i ty  p r o b l e m s .  It is well  known that  a 
linear heat-conductivity equation with initial conditions of the type of (4) and infinite right boundary has the 
solution of a propagating "thermal wave." Though the thermal wave instantaneously propagates to infinity, 
in practice a region may be indicated in which the temperature is identical to the initial temperature. Such 
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t y p e s  of s o l u t i o n s  w e r e  expec t ed  in our  p r o b l e m .  
s m a l l  s e g m e n t  f r o m  the c a v i t y  b o u n d a r y .  
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F i g .  3 

The  c a l c u l a t i o n  was  t h e r e f o r e  i n i t i a l l y  conduc ted  o v e r  a 

The  c o m p u t a t i o n a l  r e g i o n  was doubled  when the  l a s t  c o m p u t a t i o n a l  va lue  d i f f e r ed  f r o m  the i n i t i a l  v a l u e  
by a m a g n i t u d e  o n t h e o r d e r o f 0 . 0 0 1 ~ o .  A c c u r a c y  is  thus  i n c r e a s e d  to t he  r e q u i r e d  l i m i t  a t  the i n i t i a l  m o -  
men t  of t i m e  and i t  b e c o m e s  p o s s i b l e  to  c a r r y  out  the  c o m p u t a t i o n  to  any d i s t a n c e  f r o m  the  cavi ty �9  

C a l c u l a t i o n s  w e r e  c a r r i e d  out in the  s tudy  of the g a s - p r e s s u r e  d i s t r i b u t i o n  and g a s - f i l t r a t i o n - r a t e  
d i s t r i b u t i o n  wi thin  a p e r m e a b l e  m e d i u m  within  a wide  r a n g e  of v a r i a t i o n  of  the  d i m e n s i o n l e s s  p a r a m e t e r s :  
H 0 v a r i e d  f r o m  10 -3 to 10 - i ,  a f r o m  10-2-102, /~ f r o m  0.03 to  0.81;  y = l  and 3; n = n l = l  ( i s o t h e r m a l  p r o -  
c e s s )  �9 

Figures la and b depict the pressure distribution with respect to coordinate and time, respectively, 
in one form of the calculation: v =3, H0= 10 -2, ~= i, and fi= 0.03. Dimensionless moments of time (Fig. la) 
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TABLE I 

l q ~ ,  % . 

i0 ! 9,7 
100 I 21,5 

,t9 
6,7 I 4,7 

14,9 1 ,3 
3,3 
7,2 

and coord ina te  x (Fig.  lb) a r e  indicated on the  c u r v e  by digi ts .  The t ime at which the f i l t e r ing  gas a r r i v e s  
at  d i f fe ren t  d i s t ances  f r o m  the cavi ty ,  given t he se  values  of the d i m e n s i o n l e s s  p a r a m e t e r s  ~, He, c~, and fi 
in the c a s e  of c o m p l e t e  mixing of the cav i ty  and in t e r s t i t i a l  gases  in the  d i s tu rbed  reg ion ,  was de t e rmined  
based  on the computed  g a s - p r e s s u r e  d i s t r ibu t ion  in the med ium H=f (x ,  ~). 

Since p r e s s u r e  at  e v e r y  point in space  i n c r e a s e s  smooth ly  with t i m e  (Fig.  lb) and the momen t  at 
which it b e c o m e s  diff icult  fo r  p r e s s u r e  to i n c r e a s e  was de t e rmined ,  the point  at which the s t r a igh t  line, 
d rawn c o r r e s p o n d i n g l y  t h rough  the de r iva t ive  m a x i m u m  on the s egmen t  a long  which p r e s s u r e  i n c r e a s e s ,  
to  the init ial  level  of the i n t e r s t i t i a l  p r e s s u r e  was plot ted a f te r  the f i l t ra t ion  " f ron t "  had a r r i v e d  at a given 
d i s tance .  
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TABLE 2 

e 

Weakly fractured 
rock Fractured rock 

Strongly fractured 
rock, alluvium 
tufa 

A 

Ii k,D 

]fT, c m  

1 

ts i0 
t-'~ 3 l,O i00 

20 

4O 

1 

IC 
B te t 7,0 10C - -  

2C 

4C 

o; ts 

c ~ 3 6,r 1o 
2O 

I 3 9 

0,01 0,t 0,t t t t0 

4.10--s 8.10--7 8.10--v 1,4.10 -~ 1,4.t0 -5 3.10 -4 

57 sec 5,7see 18sec 

3 min 11 min 

i,8 rain 10,8see 48see 

1,6 h 9,6min 30rain 
18 min t,3 h 8 min th 

38 rain 2h 12 min 44min 
5~h 32 min 4h 

2,5 h 8 h 48 rain 2,9 h t7,6min 
4,8h 2i,3h 2,1 h 16h 

4,tscc t2,6sec 

7rain 21 rain 2,1rain 7 rain 

28 min 1,4 h 8,4 rain 27 rain 2,7 rain 

1,9 h 5,6 h 34 rain 1,8h i0,8 rain 

8,0 h 

6,4h 

25,4 h 
48 h 

41see 

t,1 h 

4,6 h 

18,4 h 

18,2see 
2rain 

30 rain 

2h  
13,2h 

1,8 SeC 
~ .  i,-~n 7,7 see1 

3 rnin 
20rain 2,1 h 12,8ruin 

i2 min 
i,3h 8,5h 51 min 

C a l c u l a t i o n s  w e r e  c a r r i e d  out fo r  the a r r i v a l  t i m e s  of the cav i ty  gas  a t  d i f f e ren t  d i s t a n c e s  f r o m  the 
cav i ty  in the s i m p l e s t  c a s e  when the c a v i t y  and i n t e r s t i t i a l  g a s e s  did not mix .  In th is  c a s e  the a r r i v a l  t i m e  
of the cav i ty  gas  to  a f ixed d i s t a n c e  is c h a r a c t e r i z e d  by the mot ion  of the i n t e r f a c e ,  which  can be found f r o m  

the equa t ions  

I ! 

M~ = ~ v = 3; M o = t ~r2 pdr whenv = l ,  

w h e r e  M0 is the  m a s s  of gas  that  has lef t  the  cav i ty ,  l is the i n t e r f a c e  coo rd ina t e ,  and 1fro 2 is  the f i l t r a t i on  

cha nne l  a r e a .  

Thus  the me thods  tha t  have  been  used  in th is  s tudy to d e t e r m i n e  the a r r i v a l  t i m e s  of a f i l t e r i n g  gas  

a t  a g iven  d i s t a n c e  y ie ld ,  c o r r e s p o n d i n g l y ,  uppe r  and lower  bounds of this highly i m p o r t a n t  c h a r a c t e r i s t i c  

of n o n s t a t i o n a r y  f i l t r a t i o n  cond i t i ons .  

Let  us c o n s i d e r  the in f luence  of the d i m e n s i o n l e s s  p a r a m e t e r s  on the g a s - f i l t r a t i o n  p r o c e s s  and d e -  
t e r m i n e  the g r e a t e s t  a c t u a l  v a l u e s  of ~ and /3 as  the  exp los ion  p r o d u c t s  move  th rough  a d i s a g g r e g a t e d  m e -  

d ium.  The  p a r a m e t e r  ~ d e t e r m i n e s  the na tu re  of f low of the  f i l t e r i n g  gas .  When ce = 0, f low is a lways  l a m -  
Inar .  In fact ,  if we p a s s  in Eq.  (8) to the l i m i t  ~ = 0  and subs t i tu t e  the  v a l u e  of H in Eqs .  (9) and (10), we 

obtain a p r o b l e m  c o r r e s p o n d i n g  to the D a r c y  law in the  f o r m  

_ o__.~p (16) 
Or =---~q 

in p l ace  of  Eq.  (2). T h e r e f o r e ,  we m a y  use  d e p e n d e n c e s  obta ined on the ba s i s  of Eq.  (16) only when oz <<1 

and it is n e c e s s a r y  to use  the  t w o - t e r m  law (1) in s e p a r a t e  c a s e s .  

Th i s  c o n c l u s i o n  c o n f i r m s ,  in p a r t i c u l a r ,  r e s u l t s  of ca l cu l a t i ons  of  the  pos i t ion  of the f i l t r a t i o n  f ron t  
hodograph  fo r  v a l u e s  of ~ be tween  10 -2 and 102, which a r e  dep ic ted  in F ig .  2 ( s p h e r i c a l l y  s y m m e t r i c  gas 
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mot ion  at a cav i ty  p r e s s u r e  of 102 k g / c m  2 and m e d i u m  p o r o s i t y  1%) in  one v a r i a n t  of the c a l c u l a t i on  when 
v = 3, H 0 = 10 -2, and/3 0 = 0.03. It is e v i d e n t  that  a does not s t r ong ly  affect  the mot ion  of the f i l t r a t i on  f ron t  

in the r a n g e  0 < a <1 and beg ins  to s u b s t a n t i a l l y  change the pos i t ion  of the f ron t  hodograph only when ~ > 1. 

We wi l l  use  publ i shed  data  on the m e a s u r e m e n t  of the p e r m e a b i l i t y  of rock  that  has been  d i s a g g r e -  

gated by an exp los ion  [6-8] in o r d e r  to e s t a b l i s h  the g r e a t e s t  a c tua l  va lue  of a .  The zone of i n c r e a s e d  p e r -  

m e a b i l i t y  is s i tua ted  f rom 6-10 cav i ty  r a d i i  f r o m  the exp los ion  c e n t e r  depending  on the type of rock  and 
the n a t u r a l  s t a te  of the m a s s i f  and a lso  on exp los ion  ene rgy .  P e r m e a b i l i t y  in the zone of s t rong  s h a t t e r i n g  
v a r i e s  f r o m  10-1-1 D and f r o m  10-2-10 -1 D in the f r a c t u r e  zone.  Such a r a n g e  of v a r i a t i o n  of p e r m e a b i l i t y  

leads  to a be ing  l e s s  than  1. In v iew of this  fact  and s i nc e  the pos i t ion  of the  f i l t r a t i on  f ron t  hodograph in 

x and ~- coo rd ina t e s  weak ly  depends  on ~ when ~ <1, we a s s u m e d  a = 1 in the subsequen t  ca l cu l a t i ons .  

It was a l so  a s s u m e d  that  cav i ty  cave  in and the f o r m a t i o n  of a c a v e - i n  funnel  occu r s  wi th in  t i m e  t 
s ign i f ican t ly  exceeding  the  c h a r a c t e r i s t i c  f i l t r a t i o n  t i m e ,  i . e . ,  t >>m~ r02/plk. T h e r e f o r e ,  the p e r m e a b i l i t y  
of highly f r i ab l e  rock  in a c a v e - i n  funnel ,  amoun t ing  to about 10-103 D, was not t aken  into account  in th is  

case .  

The p a r a m e t e r  /3 is d i r e c t l y  p r o p o r t i o n a l  to m e d i u m  po ros i t y  m and c o r r e s p o n d s  chief ly  to the r a t e  
of p r e s s u r e  drop in the cavi ty .  When /3 = 0, p r e s s u r e  in the cavi ty  is cons tan t .  The in f luence  of /3 on the 
n a t u r e  of the v a r i a t i o n  of p r e s s u r e  in  the  cavi ty  is depicted in  F ig .  3 for  v = 3, ~ = I ,  and H 0 = 10 -2. The 
dependence  of cav i ty  p r e s s u r e  on t i m e  d e t e r m i n e d  for  a 6 .5-kg n u c l e a r  exp los ion  at a depth of 240 m in a l -  
luv ium with a dens i ty  of 1.9 g / c m  3 and m o i s t u r e  of 12% [9] is  depic ted  by the b r o k e n  cu rve .  The f ree  p o r -  
os i ty  is  about  15% for  an a l l u v i u m  p o r o s i t y  of 25-30% and m o i s t u r e  of 12%, which c o r r e s p o n d s  to t3 ~ 0A5.  
The b r o k e n  l ine is  s i tua ted  be tween  the c u r v e s  for  /3 = 0.27 and /3 = 0.81 for  low ~,  though the m e a s u r e d  p r e s -  
s u r e  s u b s e q u e n t l y  d e c r e a s e s  m o r e  s t r o n g l y  than  the computed  p r e s s u r e .  This  d i f f e rence  is expla ined  by 
the obvious  fac t  tha t  t h e r m a l  p r o c e s s e s  in the ca l cu l a t i on  were  not t aken  into account .  

F i g u r e s  4a and b depic t  the in f luence  of po ros i t y  m on a r r i v a l  t i m e  of the f i l t r s t i o n  f ron t  (unbroken 
curves)  when u= 3 and when the i n t e r f a c e  moves  (broken  curves )  for  u = 3 and p= 1. In a l l  c a s e s ,  a = 1 and 
H 0 = 10 -2. The  va lue  of m is ind ica ted  in p e r c e n t  on the c u r v e s .  

The in f luence  of gas p r e s s u r e  in the cav i ty  on the speed of the f i l t r a t ion  f ron t  (unbroken c u r v e s )  is 
i l l u s t r a t e d  by F i g s .  5a and b for  v = 3 and u= 1, r e s p e c t i v e l y .  The b r o k e n  cu rves  depic t  the  pos i t ion  of the 

i n t e r f a c e .  Va lues  of H 0 a r e  indica ted  on the c u r v e s .  In a l l  the c a s e s ,  a = l  and m = 0 . 0 1 .  The i n t e r f ace  
moves  l e s s  r ap id ly  in the case  of equal  cav i ty  p r e s s u r e  when v =3 than when v = 1. 

The ca lcu la ted  dependence  of f i l t r a t i o n - f r o n t  a r r i v a l  t i m e  on d i s t a n c e  in the a b s e n c e  of cav i ty  cave  in 
in the case  a = 1, Pl = 10z kg/cm2,  and m = 0.01 can  be d e s c r i b e d  by in t e rpo la t ion  f o r m u l a s  in  the s p h e r i c a l l y  
s y m m e t r i c  c a s e  (u = 3,/3 = 0.03) ~- = 0.1122 x 3"22 where  3.0 < x <10, while in the t w o - d i m e n s i o n a l  c a s e  (v = 1, 

/3=0.0075) 
z = 0,692 x i.9, 2.0 < x ,~ iO. 

Gas flow through a fixed s u r f a c e  in the c a s e  v =1 ,  (y=1, /3=  0.0075, andH0= 10 -2 when ~- > 0.3 can be 

r e p r e s e n t e d  in the r a n g e  2 < x < 10 in the f o r m  

Q 0.423 0,i77 . 
i x  - -  0.06 exp (0.t135T)1 | ,  x :> 0.06 e~ 

0.423 
Q -= ~ ,  x ~ 0.06 exp (0.It35"~). 

The c a l c u l a t i o n  d e m o n s t r a t e d  that  t h e r e  ex i s t s  a l imi t ing  d i s t a n c e  L m =  W m / r  0 to which  the  i n t e r f a c e  
be tween  the explos ion  p roduc t s  and a i r  p r o p a g a t e s  in the a b s e n c e  of mix ing ,  depending  on the p o r o s i t y  of 
the m e d i u m  and gas m a s s  in the cavi ty .  Th i s  d i s t ance  can be e x p r e s s e d  in t e r m s  of m and cavi ty  p r e s s u r e  

H0, 

w,. [,_Ho(,_m)],3 
r--~ =1_ Horn j when ~---3; 

Wm 4 it:-- Ho (i -- 0.75m)] when v t .  
ro 3Horn 

T a b l e  1 p r e s e n t s  v a l u e s  of the l i m i t i n g  d i s t a n c e s  Lm when v = 3 for  a n u m b e r  of va lues  of m and Pl. 
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The t ime at which the cavity gas is discharged into the a tmosphere  is in prac t ice  the most  important 
cha rac te r i s t i c  of an underground explosion. Since in ca r ry ing  out the calculations we have assumed that 
the medium was infinite, the moment of a r r iva l  of the filtration front or of the interface to a hypothetical 
f ree  surface situated at a required  distance W from the point of explosion was taken as the time at which 
the gas is discharged into the a tmosphere .  

The time t s at which the fil tration front  discharged into the atmosphere and the t ime t c at which the 
interface is likewise discharged are presented in Table 2 for a number of rocks charac ter ized  by differing 
degrees  of f ractur ing,  porosi ty ,  and permeabi l i ty  k and ~ for  a typical depth of the camouflaged explosion 
W between 6r0 and 7r 0. Times in the case of a spher ical ly  symmet r i c  (9 = 3) motion can be found in the 
group of rows indicated by A (Table 2) and t imes in the case of two-dimensional  (9 = 1) motion when Pt = 
100 kg /cm 2 and distance to the free surface W = 7r0 a re  given in the group of rows indicated by B. The C 
group of rows contains a r r iva l  t imes when v = 3, Pl = 16 kg /cm 2, and W = 6r 0. 

Values of the turbulent permeabi l i ty  coefficient k t are  taken from an empir ica l  dependence between 
k and k~_ (Fig. 6) constructed using previous [2] data. The value of # was taken equal to 2 �9 10 -4 p, which 
cor responds  to the viscosi ty  of carbon dioxide at a temperature  of about 40~ and p re s su re  of about 60 kg /  
cm 2. The scale of the explosion is determined by the cavity radius r0. It is c lear  from Table 2 that the 
time at which the explosion products  are  discharged into the a tmosphere  substantially depends on the fil-  
t rat ion charac te r i s t i c s  of the disaggregated medium and the explosion scale.  Thus, d ischarge t ime strongly 
dec reases  as medium poros i ty  and permeabi l i ty  increase .  The influence of explosion scale on discharge t ime 
is par t icu lar ly  great.  A 200-400% increase  in the linear explosion scale increases  the discharge t ime of 
the cavity gas by more  than 500-1000%. 

We note that the disaggregation region is usually prolate upwards in a camouflaged explosion due to 
the presence  of b reak-away  disaggregations and the freedom with which the medium shifts towards the 
c res ta l  plane. It therefore  seems  that the initially organized spherical ly  symmet r i c  gas motion assumes  
the nature of two-dimensional  motion at the last  stage. We may therefore  suppose that the actual t imes 
at which the gas is discharged into the a tmosphere  will have intermediate values between that calculated 
for  i, = 3 and v = 1. Moreover ,  a cave-in column will form in great  explosions when the cavity roof is insuf- 
ficiently stable over t ime t<  mpr02/plk and the data in Table 2 may turn out to be overstated.  

The inert ial  t e r m s  p(Su/St) and pu(Su/8 r) were eliminated from the motion equation in solving the 
problem. An est imate  of the inert ial  t e rms  after  the calculations were ca r r i ed  out, shows that they are  quite 
negligible, since they a re  two to three orders  of magnitude less than the remaining t e rms  of the motion 

equation. 

These resul ts  of the calculations can be improved if we begin to consider  thermal  p rocesses ,  take 
into account the dependence of porosi ty  on distance f rom the explosion point and gas v iscos i ty  on t empera -  
ture,  and also refine the p r e s s u r e  of the explosion gases in the cavity as a function of the type of explosion 
source,  soil cha rac te r i s t i c s ,  and explosion scale.  
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